A Smaug2-Based Translational Repression Complex Determines the Balance between Precursor Maintenance versus Differentiation during Mammalian Neurogenesis.

نویسندگان

  • Gianluca Amadei
  • Mark A Zander
  • Guang Yang
  • Jason G Dumelie
  • John P Vessey
  • Howard D Lipshitz
  • Craig A Smibert
  • David R Kaplan
  • Freda D Miller
چکیده

UNLABELLED Here, we have asked about post-transcriptional mechanisms regulating murine developmental neurogenesis, focusing upon the RNA-binding proteins Smaug2 and Nanos1. We identify, in embryonic neural precursors of the murine cortex, a Smaug2 protein/nanos1 mRNA complex that is present in cytoplasmic granules with the translational repression proteins Dcp1 and 4E-T. We show that Smaug2 inhibits and Nanos1 promotes neurogenesis, with Smaug2 knockdown enhancing neurogenesis and depleting precursors, and Nanos1 knockdown inhibiting neurogenesis and maintaining precursors. Moreover, we show that Smaug2 likely regulates neurogenesis by silencing nanos1 mRNA. Specifically, Smaug2 knockdown inappropriately increases Nanos1 protein, and the Smaug2 knockdown-mediated neurogenesis is rescued by preventing this increase. Thus, Smaug2 and Nanos1 function as a bimodal translational repression switch to control neurogenesis, with Smaug2 acting in transcriptionally primed precursors to silence mRNAs important for neurogenesis, including nanos1 mRNA, and Nanos1 acting during the transition to neurons to repress the precursor state. SIGNIFICANCE STATEMENT The mechanisms instructing neural stem cells to generate the appropriate progeny are still poorly understood. Here, we show that the RNA-binding proteins Smaug2 and Nanos1 are critical regulators of this balance and provide evidence supporting the idea that neural precursors are transcriptionally primed to generate neurons but translational regulation maintains these precursors in a stem cell state until the appropriate developmental time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specific microRNAs modulate embryonic stem cell-derived neurogenesis.

MicroRNAs (miRNAs) are recently discovered small non-coding transcripts with a broad spectrum of functions described mostly in invertebrates. As post-transcriptional regulators of gene expression, miRNAs trigger target mRNA degradation or translational repression. Although hundreds of miRNAs have been cloned from a variety of mammalian tissues and cells and multiple mRNA targets have been predi...

متن کامل

Specific microRNAs modulate ES cell-derived neurogenesis

MicroRNAs (miRNAs) are recently discovered small non-coding transcripts with a broad spectrum of functions described mostly in invertebrates. As post-transcriptional regulators of gene expression, miRNAs trigger target mRNA degradation or translational repression. While hundreds of miRNAs have been cloned from a variety of mammalian tissues and cells, and multiple mRNA targets have been predict...

متن کامل

Mammalian Neurogenesis Requires Treacle-Plk1 for Precise Control of Spindle Orientation, Mitotic Progression, and Maintenance of Neural Progenitor Cells

The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance ...

متن کامل

The role of microRNAs in cancer: no small matter.

MicroRNAs are a recently discovered class of small, evolutionarily conserved, RNA molecules that negatively regulate gene expression at the post-transcriptional level. Mature microRNAs of approximately 20-22 nucleotides are formed from longer primary transcripts by two sequential processing steps mediated by a nuclear (Drosha) and a cytoplasmic (Dicer) RNAse III endonuclease. In the context of ...

متن کامل

Translational control in germline stem cell development

Stem cells give rise to tissues and organs during development and maintain their integrity during adulthood. They have the potential to self-renew or differentiate at each division. To ensure proper organ growth and homeostasis, self-renewal versus differentiation decisions need to be tightly controlled. Systematic genetic studies in Drosophila melanogaster are revealing extensive regulatory ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 47  شماره 

صفحات  -

تاریخ انتشار 2015